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Chatwin (1970) has described the approach to normality of a cloud of solute 
which is injected into a pipe containing solvent in steady laminar flow. This 
paper is concerned with the modification of Chatwin’s theory when there is a 
small density difference between the solvent and the dissolved solute. Asymptotic 
series are derived for the induced density currents and for the distribution of 
solute in the case when the molecular diffusivity is constant throughout the 
pipe’s cross-section. These series lead to the asymptotic forms of the moments 
of the distribution, thereby describing some additional deviations from nor- 
mality caused by buoyancy effects at large times. The theory predicts that the 
additional dispersion due to buoyancy effects’is proportional to the square of 
the Rayleigh number and depends on the PBclet number of the flow. There is 
excellent agreement between the results and those previously obtained by the 
author (1976) from Erdogan & Chatwin’s (1967) model of dispersing buoyant 
solutes. The results confirm that Erdogan & Chatwin’s intuitive theory correctly 
models the significant features of the situation for large Schmidt numbers. 

1. Introduction 
This paper is concerned*th some further aspects ofthe dispersion of a buoyant 

solute in a straight horizontal pipe of circular cross-section. In  part 1, the author 
(1976) has presented some calculations based on the earlier analysis of the subject 
by Erdogan & Chatwin (1967) and both these references contain comprehensive 
introductory remarks. 

To describe the analysis of the problem so far, a buoyant contaminant is 
injected into a liquid in laminar flow in a straight horizontal pipe, and it subse- 
quently spreads out under the action of density currents, molecular diffusion 
and axial convection. Erdogan & Chatwin (1967) have derived an equation for 
the mean concentration c, replacing the diffusion equation for 6 which holds 
when the contaminant does not cause dynamical effects. In  part 1, the author 
derived a very rough approximation to and calculated the asymptotic form 
of the second moment of a distribution of buoyant solute, thereby showing that 
buoyancy forces a t  large times have only a small effect on the total dispersion 
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of solute. The analysis of part 1 is based on Erdogan & Chatwin’s equation for 6, 
which, in turn, is based on certain physically reasonable (but unjustified) asser- 
tions. Clearly i t  is desirable to justify Erdogan & Chatwin’s results. 

The two references cited above give a preliminary understanding of the dis- 
persion of buoyant solutes in laminar flow but, as Erdogan & Chatwin remarked, 
there remains a need for a more detailed treatment of the underlying time- 
dependent problem. This investigation partially fulfils this need by describing 
the time-dependent dispersion of a non-passive marker as the asymptotic state 
is approached. 

The technique used in the following work draws on an investigation by 
Chatwin (1970) of the dispersion of a passive marker a t  large times. Chatwin 
showed that a series representation of the form 

C = T-lC(l)(r, 8, X )  + T - Y P ( Y ,  8, X )  + . . . + T-W(%)(r, 8, X )  + O(T--1) (1.1) 

is consistent with the concentration equation as t -t 00, where the non-dimensional 
asymptotic co-ordinates X and T are defined by 

= z ( K / & ~ W ~ U ~ ~ ) * ,  T = (&ftK/U2)*.  (1.2) 
The notation in these equations has been introduced in part 1; that is, z is an 
axial co-ordinate in a frame moving a t  the discharge speed W and a is the radius 
of the pipe. At this stage, M may be regarded as a dimensionless constant, whose 
value is determined later to express the results in the most convenient form. 
For this part, as in part 1, the molecular diffusivity K of the solute is assumed to 
be constant and independent of concentration. Chatwin established that, for 
a passive marker, the first term in (1.1) was the Gaussian profile originally pre- 
dicted by Taylor (1953), and that subsequent terms in (1.1) described the de- 
viations from normality at large times. Moreover, Chatwin showed that the 
series (1.1) was equivalent to several other representations previously obtained 
for distributions of passive solutes. 

The situation is substantially more complicated when the solute gives rise to 
buoyancy forces. For distributions of buoyant solutes, an asymptotic analysis 
must include the effects of small axial, radial and azimuthal density currents. 
This problem is therefore governed by six equations, viz. three Navier-Stokes 
equations, a concentration equation describing molecular diffusion, and rela- 
tions describing the fractional rate of expansion and the dependence of density 
upon concentration. A suitable set of model equations is the set (2.1)-(2.6) in 
part 1, where, as before, the density depends on concentration according to 

P = Po(1 +aC) (1.3) 
and the Boussinesq approximation is used. The formula (1.3) should be valid 
provided that the concentration of the solute is small. 

The six governing equations are solved for large times in the following work 
using asymptotic series to represent the dependent variables C, p ,  u, v and w. 
This paper aims to describe how a buoyant cloud of solute injected around 
z = zo (say) subsequently disperses under the effects of advection, diffusion and 
density currents. Now, for exceedingly large times, it  is expected that the solute 
would be dispersed to such an extent that buoyancy forces would be negligible. 
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This implies that a velocity distribution arbitrarily close to the Poiseuille 
profile would be obtained by considering t sufficiently large. Thus one would not 
expect fhite density currents as t-too and, moreover, at very large times, the 
distribution of solute would be determined (as for a passive marker) by a balance 
between longitudinal advection and cross-sectional molecular diffusion. For 
this reason, an expansion of the form (1.1) should still be valid for distributions 
of buoyant solutes. In  this proposed expansion, the first term would remain the 
Gaussian term as for a passive marker, and the subsequent terms would now 
include the effects of density currents at  large times. 

The above arguments also suggest that the velocity components need to be 
represented by the expansions (valid for large t )  

w - w(O)+T-~W(~)+T-~W(~)+..., (1.4) 

Finally, an expansion for the pressure enables the governing equations to be 
solved sequentially by equating the coefficients of T” to zero (n = 0,1,2,  ...). 
The proposed expansion for p is slightly more complicated than those above and 
is deferred until 92. The determination of the coefficients in these series estab- 
lishes representations for the dependent variables at large times although no 
attempt is made to prove that the theory is asymptotically correct as t + CO. 

There are two principal conclusions which emerge from this study. The first 
conclusion is negative in that the dispersion of a buoyant solute cannot be pre- 
dicted without the full numerical solution of the governing equations. The diffi- 
culty precluding a predictive study is that the expansion (l.i) for the concentra- 
tion profile involves a sequence of arbitrary constants whose values cannot be 
determined without numerical work. This conclusion reverses that of Chatwin 
(1970), who found that, for passive markers, a corresponding sequence of con- 
stants could be determined analytically by the asymptotic solution of a linear 
equation. 

The second conclusion concerns the accuracy of the results derived in part 1. 
It is found that there is excellent agreement between the results of parts 1 and 2 
provided that the Schmidt number CT of the flow is 1arge.t To summarize the 
important features of the work, the dispersion induced by buoyancy effects at  
large times is relatively small, being only O(t-l) as t + CO, whereas the dispersion 
induced at times when transient effects are significant is O(to). The dispersion 
induced at large times is proportional to the square of the Rayleigh number R, 
and also depends on the PBclet number P of the flow.? The dispersion is increased 
in flows for which P is small, and decreased in flows with large values of P. 
Buoyant and passive markers are found to disperse similarly in flows where P 
is near a critical PBclet number P,. 

The results of part 2 confirm that the equation for 6 derived by Erdogan & 
Chatwin (1967) is accurate for large Schmidt numbers, even though it was 

t These numbers were d e h e d  in equation (2.14) of part 1. 
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derived from a simplified mathematical model (described in $2  of part 1). This 
justifies the assumptions incorporated in Erdogan & Chatwin’s model. 

The plan of the paper is as follows. First some necessary preliminary work is 
described in $92 and 3. Series representation of the dependent variables a t  large 
times is shown to be consistent with the non-dimensionalized equations. The 
equations for the coefficients in the series are then solved sequentially to give an 
approximation to  the density currents at large times, and functional forms are 
established for the coefficients On), n 2 1, in ( I. 1). This complicated preparation 
enables the most important results of the paper to be derived in $4. Here, the 
terms O n ) ,  n 2 1, are calculated explicitly and used to derive the asymptotic 
form of the moments of the distribution. From the representation of the moments, 
it is then possible to identify the dispersion which is induced by buoyancy effects 
a t  intermediate and at asymptotically large times ( 3  5). 

2. Equations for the dependent variables 
If the non-dimensional variables w‘, u’, v’, r’ and p’ are defined by 

w = Ww‘, u = ~ a - ~ u ’ ,  v = ~ a - ~ v ’ ,  r = ar’, p = po W2p‘, (2.1) 

and the asymptotic co-ordinates X and Tare introduced, the system of equations 
(2.1)-(2.5) in part 1 becomes (now omitting the dashes on the non-dimensionalized 

The parameters P ,  (T and R were introduced in part I [equation (2.14)]. In  the 
above equations, the formula (1.3) has been used to describe the dependence of 
density upon concentration, and the Boussinesq approximation has been applied. 
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Now it has been argued in $ 1  that the basic flow reverts to Poiseuille flow for 
exceedingly large times when the solute can be regarded as fully dispersed. In  
this case, the axial Navier-Stokes equation reduces to the simple form 

where G* is a dimensional constant depending on the flow conditions. This 
equation gives the leading term in an expansion for p ,  and it follows that a general 
expansion for p using the asymptotic variables X and T will be 

(2.8) p N GTX + (a/P)2{p(o)(r, 8,  X )  + T-lp(l)(r, 8, X )  + . ..> for t large. 

Here G is a non-dimensional constant related to G* by 

G = G*a2/(po~W). 

The multiplying factor is introduced into (2.8) since the appropriate 
dimensional scaling factor for those pressure forces which cause density currents 
is 

and not po W2 as used in (2.1). If i t  is assumed that v is constant, the first term 
in the expansion (1.4) for w is found to be the Poiseuille profile 

Po( v/a)2 = po W2( v/ Fa)* = po W2( a/P)2, 

w(0) = 1 - 2r5 (2.9) 

when the requirement [see equation (2.27) below] 
- 
w(0) = 0 (2.10) 

is satisfied. j For (2.10) to hold, G must satisfy the relation 

G/CT = -8 .  (2.11) 

The expansion (1.4) for w requires a similar modification to ensure that w is 
correctly scaled; that is, write 

w N w(O) + (g /P)  {!P'W(~) + T-ZW(2) + . . .}, 

v/a= Wa/P,  

(2.12) 

where the factor a /P  has been introduced because the axial density currents 
should be scaled by 

and not W a s  in (2.1). 
Equations for the dependent variables are now obtained by substituting the 

expansions ( l . l ) ,  (2.8), (1.5), (1.6) and (2.12) into (2.2)-(2.6) and equating the 
coefficients of T-n to zero. Thus the equations from the To coefficients are 

(2.13) o = - a ap(o)/ar - R COS e, 
ap(0) 

r ae 0 = ---++Rsin8, (2.14) 

(2.15) 

t A n  overbar denotes the cross-sectional mean. 



(2.20) 

The general equations from the coefficients of T4 for n > 2 are 

(2.25) 
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Since the terms in each of the asymptotic series are independent, the above 
equations are to be solved under the boundary conditions 

, % = 1 , 2  ,..., a t r = l  (2.26) u(i) = v(i) = w(i) = 0 

aC(i)/ar = 0, i = i , 2 ,  ..., 
with the further condition, holding in the frame of reference moving at  the 
discharge speed, 

w(i) = 0 , i = 1 , 2  ,.... (2.27) 

There are two other conditions which must be imposed on the solutions: the 
velocity distributions must always be finite and the concentration profile must 
be such that 

I w+ WW(@ = 0 - 

- 

Z%’(i)rdrdt9dz < constant, i = 1,2,  ..., p = 0,1,2,  ... . (2.28) sss,,.k pipe 

This ensures the existence of all the moments of the distribution. 

3. The successive representation of the dependent variables 
The equations derived in $ 2  are now solved successively to  establish the 

asymptotic series for the dependent variables. Only the first two sets of equations 
are considered in depth in this section (in S3.i )  and routine details of further 
calculations for the density currents are suppressed or included in the appendix. 
The concentration equation (2.24) is systematically investigated in the last half 
of the section ($3.2). 

3.1. The velocity components 
The fist set of equations (2.13)-(2.15) has the solutions 

p(O)(r, 19, X )  = ( - R/a) r cos I9 + d 0 ) ( X ) ,  

w(O)(r) = 1 - 2r2, 

(3.1) 

(3.2) 

where dO)is a function of X to be determined by applying (2.27) to higher approxi- 
mations. In  the second set of equations (2.16)-(2.20), the continuity equation 
(2.20) is satisfied identically by using a stream function @l)(r, 8, X )  such that 

u(l) = r-lag(1)/a19, ~(1)  = - a p ) / a r  (3.3) 

@(I) = a p ) / a r  = 0 at r = 1. (3.4) 

and which, using (2.26), satisfies the boundary conditions 

With this stream function, p(l) may be eliminated from (2.16) and (2.17), giving 

But since i t  follows from (2.19) and (2.26) that 

7 
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(3.4) and (3.5) only admit the trivial solution @l) = 0. (The unknown function 
f ( ' ) ( X )  in (3.6) is determined later by applying a consistency condition to the 
equation for C(3) in the manner of Chatwin 1970.) Also the equation for dl) now 
takes the form 

VZW(1) = p-l (0) nx 9 

with the solution 
w(l)(r, 8, X) = P-17rg i ( r2 -  1). 

The application of (2.27) thus gives a flrst-order equation for do) which implies 
that the first-order axial velocity perturbation vanishes; i.e. 

w(l)(r, 8, X) = 0. (3.7) 

These results show that the buoyant solute only induces O ( P 2 )  velocities as 
t+m. The discussion of the O(T-1) terms is completed by observing that either 
(2.16) or (2.17) implies 

p ( r ,  8, s) = ( - a ~ / v )  c(1) r COB e + n(qx), (3.8) 

where # ( X )  is to be determined in the same manner as d0)(X). 
The set of equations resulting from O ( ! P 2 )  terms may be solved in a similar 

way. Since w(l) = 0, (2.25) admits a stream function $@) with properties analo- 
gous to (3.3) and (3.4) and which satisfies the equation 

The equation for C@) becomes 

with a solution of the form 
VZC(2, = W(O)C(1) 

X ,  

(3.9) 

(3.10) 

C(2)(r, X )  = g@)(r) df(l)/dX +f("(X) .  (3.11) 

Here f@) ' (X)  is an unknown function of X which is determined later, and g@)(r) 
satisfies the equations 

(3.12) 
- 

[ag(2)/ar],, = 0, g'2) = 0.J 

The equations for gc2), $@) and w@) may be solved successively to give the repre- 
sentations 

g@)(r) = &( - 3r4 + 6r2 - 2), (3.13) 

(3.14) 
aRdf ( l )  1 

$(')(r, 8, A )  = ---sin 8 - (r7 - 6r5+ 9r3- 4r), v ax 2304 

P d f ( l )  1 
w(')(T, 8,  S) = a R  - - COB 8 - ( - r3 + r )  ax [ 8P2 

1 1  
46080 v + - - (r9 - lor7 + 30r5 - 40r3 + 19r) 

Higher terms in the series for the velocity variables and the pressure may be 
found quite readily by systematically solving the equations derived in $2. 
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u N T--2d2) + !Z'-s~(3) + . . . v N T-W2) + T - s ~ ( s )  + . . , 
u(2) = iqr)  cos e 
u ( 3 )  = k,(r)  cos 0 

w(2) = Z1(r) sin 0 
v(3) = Z,(r) sin 0 

u(4 )  = k,(r) cos ~ + k , ( ~ )  cos 2e 
~ ( 5 )  = k5(r) + k6(r)  cos e + k7(r) cos 2e 

w N w(O)(r) + (a/P)  { T - 2 ~ ( 2 )  + T-3w(s) + . . .} p N G T X + ( ~ / P ) Z { ~ ( o ) + T - l l a ( ' )  +...> 
w@) = 1 - 2r2 p'0' = n,(r) cos e 
up) = ml(r)  cos e p(1) = nl(r) cos 0 
w(3) = cos e p(2) = n&) cos 8 
d 4 )  = m3(r )+m4(r )  cos 0+m,(r) cos 28 p(3)  = 7+3)(x) +n,(r) cos e 
TABLE 1. The form of the coefficients in the non-dimensional asymptotic series for u, v, 

w and p for large t .  Some further details are given in the appendix. 

There is one slight complication since a stream-function approach is no longer 
applicable for terms O(T-") when n 2 3; the method used to obtain the velocity 
variables u(") and v(n) for n 2 3 has been described briefly in the appendix. The 
terms in the series for u, v, w and p have been summarized in table 1 with the 
important coefficient functions listed in the appendix. The remaining functions 
mentioned in table I are not required since it is found that they do not contribute 
to the profile C. 

3.2. The determination of the coeficients for  

The coefficient C(2) is given by (3.11) and (3.12) in $3.1.  When n = 3, (2.24) 
becomes 

(3.16) 

whence a differential equation for C(l)(X) (or f(l)(X)) is obtained by demanding 
that both sides have the same cross-sectional mean. It follows using (2.26) that 
the equation for f(l) is 

-3 lMC(1) - IMxfJ2 2 + w(O)fJg - p-2C$Ly = V2C(3), 

(3.17) 

the same equation as was established by Chatwin (1970) for the leading term in 
the profile of a passive marker (and consistent with the remarks made in $1) .  
It is clear immediately that the simplest representation for the distribution will 
use a co-ordinate X in which M is chosen to be 

Jf = 2{P-2 - w(o)g(2)}. (3.18) 

The previous three equations now give for 03) 

V2C(3) = {?0(0)9(2) - ,CO)g(W} f$& + ?u(O)j$), 

and this equation has the solution 

0 3 )  = g ' 3 ) ( r ) f ~ ' X + g ( 2 ) ( r ) f ~ + f ( a ) ( X ) .  (3.19) 

Here f(3) is another (as yet) arbitrary function of X, g@) is determined by 
(3.12) and g(31 satisfies the equations 

7-2 



100 N .  G. Barton 

(3.20) 

For n = 4, (2.24) gives an equation for U4): 

1 1 + fl c u(Ac(;-i) + - v(j) C',-j) ) - p 2  - QF x, (3.21) 
j=1 3 {  Y 

for which, after substitution for the terms on the right-hand side, the condition 
for identical cross-sectional means of both sides leads to the equation 

f Tx +Xf 3 + 2 f (2) = (2/M) w'"""'fgxx- (3.22) 

This enables (3.21) to be written as 

V2Q(4) = - ~ ( 2 )  + au(2)- dg@) )f$ + {w(O)g(3) - w(O)g(3) - 9(2)~(O)q(2)}f$,, 
dr 

+ {w(o)g(2) - w(ofg(2)}f~!y +w(O)f9, (3.23) 
k 

which has a solution of the form 

c q r ,  e, x) = g ( q r ) f g X X  + 9(4,2)(rJ 8, x)fp + g ( 3 ) ( r ) f 3 X  + g(2)(r)fg +pyx), 
(3.24) 

where g@) and g(3) are as defined previously and g(4> 1) and g(4* are solutions of the 
problems 

(3.26) - 
[ag(4~2)/ar1~=~ = 0, 9(4,2) = 0. J 

The term g(4*2)(r, 8, X ) f g  occurs in (3.24) because of the density currents induced 
by the buoyant solute, andf4) is a further unknown function of X .  

The analysis of (2.24) may be continued to as high a level of approximation 
as desired, and further results are merely recorded below without including the 
cumbersome algebraic details. Many of the inhomogeneous terms in the equations 
for the f ( j ) ( X ) ,  j 2 3, have been omitted below since they are the zero cross- 
sectional means of terms of the form func. ( r )  cos n. It is found that U5) has the 
form 

cyr, e, x) = g ( q T ) f g x X X  +gt5+, e, x)fyx +gt5+, e, x)fg 
+ 9(4~+9f9,, + 9(4+, e, x)fg + 9(3)(r)fgX + g(2)(r)f% +fyx) 

(3.27) 



(3.30) 

The above analysis of (2.24) is sufficient to determine the contributions of 
large-time density currents to the variance and skewness of a buoyant cloud of 
solute. The equations for the f(j)(X) are similar to the corresponding equations 
derived by Chatwin (1970) for a passive marker and only f") has additional 
terms caused by buoyancy effects. Equations defining the coefficient functions 
g ( " S S ) ( r ,  8, X), r 2 4, s 2 2, are given in the appendix, which also contains the form 
of these functions where this is significant. 

4. The asymptotic form of the concentration prome 
The differential equations derived above for the functions f(j)(X), j = 1, . . , 5, 

are solved in this section. This leads to a formal asymptotic representation for the 
concentration profile which can be used to establish the asymptotic behaviour 
of the moments of the distribution. The following work uses the Hermite poly- 
nomials He,(X) in the expressions for the f(j)(X), these polynomials being 
defined by Rodrigues' formula 

He, (X) = ( - 1)"exp ($X2) P e x p  ( - +Xz)tfdX*. (4.1) 

The equation (3.17) for f(l)(X) [with the constant M defined by (3.18)] has the 
acceptable solution 

in which (2.28) has been used in rejecting another independent solution. From 
(3.22), the general solution for f(2)(X) which does not violate (2.28) is seen to be 

f(l)(X) = ,8(1.0)Heo(X)exp(- tX2), (4.2) 

f@)(X) = (,8(2io)He,(X) +/3(231)He3(X))exp( - QX2), (4-3) 

p(Z,1) = M-l,8(L O)w(O)g(3). (4.4) 

where the second term is a particular solution provided that /3(4l) is defined by 
- 

The pattern of the solutions is now clear and the details may be found in 
Chatwin's (1970) paper. To record the results,f(3) and f4) have the forms 

f(3)(X) = (/3(3$0)He2 (X) +/3(3,1)He4 (X) +/3(332)He6 (X))exp ( -  +X2) ,  (4.5) 
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f4)(X) = {P(4,0)He3 (X) +/3(411)He5 (X) +P(4,2)He, (X) 
+P(4,3)He, (X))exp ( -  &P), (4.6) 

where the constants P(r,s), r > s 3 1, are known linear functions-of the ,8(r*o), 
r z 1, and are given in Chatwin's (1970) paper. 

The equation for f(5)(X) reveals the first difference between the series for 
in the cases of buoyant and passive markers. Equation (3.30) has the solution 

f 5 ) ( X ' )  = (P(5.0)He4(X)+P(5,1)HeG(X)+P(5,2)Hes(X)+/3(5,3)HelO(X) 
+/3(5,4)He12 (X))exp ( - iX2) + $$), (4.7) 

where $$) is a particular solution of (3.30) arising through buoyancy effects and 
defined by the equation 

The preceding results can be combined to give the asymptotic form for as 
shown in table 2 .  

It only remains to determine the /3('*O) to specify the approach of the cloud of 
solute to the asymptotic state. Since the constants P("30) are related directly to 
the asymptotic form of the moments of the distribution (as shown shortly), it 
would suffice to determine a representation for the moments a t  large times. 
Unfortunately, it is found that numerical methods are required to determine 
the asymptotic form of the moments of distributions of buoyant markers. 

The integral moments of C defined by 

( ~ - - z , ) ~ C r d r d B d z  ///I Crdrdedx 
whole pipe 
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can be determined from (1.1) using the following properties of the Hermite 
polynomials : 

(4.9) / I m  He, (X) He, (X) exp ( - &P) dX = (2n)*m ! S,,,, 

0 if m < n  or m - n  isodd, 
XmHe,(X)exp(-iX2)dX = (2n):m!(m-n-1)(m-n-3) ... l/(wz-n)! 

/mm i if m - n  iseven. (4.10) 

Using these properties, term-by-term integration of (1.1) gives 

m I// CrdrdBdz N SPa (2n)fr/?(l.O)+ C T1-j 
whole pipe j = 5  

where S denotes the cross-sectional area of the pipe. NOW it is shown in $6; that 

is zero and the higher terms 

/:m$$)dX, j > 5, 

in (4.11) should automatically be zero if the model equations are consistent. 
If this is assumed to be so, (4.11) reduces to 

I// CrdrdBdz = Spa( 2n)*p( l s 0 ) ,  (4.12) 
whole pipe 

that is, the constant , ! P O )  is proportional to the total amount of solute. 
The x co-ordinate zg of the centre of mass of the cloud of solute is given by 

xCr dr dB d z / / I /  Cr dr d8dz 
zg = //Jwhole pipe whole pipe 

m 
N Pa (/3(2>O)(2n)h+ 2 T2-j (p(190)(2n)4)-1, (4.13) 

j=S 

using the property (see 3 5 )  

This expression implies that the z co-ordinate of the centre of mass is constant, 
apart from some small, and possibly zero, terms induced by buoyancy effects a t  
large times. Now, it is possible (and convenient) to choose the origin of the 
moving co-ordinate frame ( r ,O , z )  such that the constant p(2*o) in (4.13) is zero, 
that is, 

and 
p(2A = 0 

(4.14) 
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Using the above results, it  is found that the second moment v2(t)  has the 

Jim X2$%)dX + O(T-3)  . (4.15) v2( t )  - (Pa)2 T2+2pcl)+(/3(110)(2n)*)-1T-2 

The first two terms in this expression have the same form as the corresponding 
terms found by Chatwin (1970) for a passive marker, although /3(3*0)now depends 
on buoyancy effects and is to be determined by matching (4.15) with the tran- 
sient form of v2(t) .  The O(T-2)  term in (4.15) is caused by density currents at  
asymptotically large times and this term is interpreted in $5 .  

It is now possible to compare the asymptotic expressions for v2(t) predicted 
by the present theory and by Erdogan & Chatwin's (1967) results. The term 
T 2  in (4.15) is given, from (1 .2 ) ,  by 

T2 = MtKfa2 

asymptotic form 

1 /3(3,0) 1 

and since the constant M defined by (3 .18)  may be calculated as 

M = 2 / P 2  + &, (4.16) 

T2  may be approximated by t ~ / 2 4 a ~  for flows in which P is large. ( P  = Wa/K is 
large when the convective speed W is great compared with typical cross-sectional 
diffusive speeds.) In  these cases, (4.15) predicts 

and the similarity between this equation and equation (4 .6 )  of part 1 is obvious. 
The main conclusion of part 1 is therefore confirmed by this study; that is, the 
dispersion induced by buoyancy effects at transient times (this quantity is now 
represented by 2(Pa)2P(310)//3(1,0)) i s  of greater order than the dispersion which ia 
induced at asymptotically large times. 

The third moment of a distribution of buoyant solute is found to have the 
form 

(4.18) 

where the O(T-2) terms include the contributions to skewness of large-time 
buoyancy effects. Again, p(4.0) is to be determined by matching (4.18) with an 
intermediate-time representation of v&) and is dependent on transient buoyancy 
effects. 

It follows from the above analysis that the properties of the moments and the 
character of the distribution may be determined from each other. To discuss the 
moments, take the Fourier-Laplace transform of the concentration equation 
[equation (2 .4)  in part 11 to obtain 

in which the velocity components and r have been non-dimensionalized as in $ 2 ,  



Dispersion of a buoyant solute in a pipe. Part 2 105 

a double dagger denotes a Fourier-Laplace transform and '%'(OH is the Fourier 
transform of the initial distribution of solute. Since we may substitute 

for Ctt and similar expressions for the other terms, the coefficients of (ik)" in 
the appropriately modified form of (4.19) would give an equation for the Laplace 
transform of the nth moment of the distribution. For passive markers, these 
moment equations are linear and have been examined by h i s  (1 956) and Chatwin 
(1970) to obtain asymptotic forms for the moments. This information enabled 
Chatwin to determine the unknown constants in the series for 6 ( X ,  T) .  Unfor- 
tunately, for buoyant solutes, the moment equations involve transforms of 
nonlinear terms and can only be solved numerically. Such a numerical solution 
for the constants p@$O) is beyond the scope of this paper so this gives the &st 
conclusion mentioned in $1 : the inability of analytical methods to predict the 
dispersion of buoyant solutes quantitatively. 

5. The dispersion induced by buoyancy effects at large times 
The term 

in (4.15) is now calculated to obtain the extra dispersion induced by large-time 
buoyancy effects. The computation of the cross-sectional means in (4.8) gives 

where 
2 W = ~ . f g ~  (aR f $)z 

21 +' '( k) -I- 100(576)3 46242 1056 +of)]. CT 
(5.3)t [ -576 x 80P4 P2 

It may be verified from (4.21, (5.2) and (5.3) that 

t The terms denoted by O(a-1) in this section are merely terms with coefficient a-l or 
6-2. An asymptotic theory based on the smallness of v-l is not implied, rather that these 
terms are negligible in the common cases where Q = V / K  is large. (For example, Q had the 
value 2900 in the experiments of Reejhsinghani, Gill & Barduhn (1966) using du Pont's 
Pontamine 6BX dye in distilled water.) The terms denoted by 0(r1) come either from 
nonlinear terms in the governing equations or from unimportant terms which are not 
uniform axially. 



106 N .  G. Barton 

are both zero, as stated in 8 4. Another simple calculation then shows that 

and the evaluation of this integral using (4.2) and (5.3) finally establishes the 
term !P2B in (4.15). 

Combining the above results, including (4.16) in particular, the time-dependent 
theory of part 2 predicts for the asymptotic form of v2(t) 

where QT is found to be 

In  contrast, the expression for v2(t) obtained in part 1 was 

U 2  
t + constant + - /32(aaR)2 &$ as t + co, 

u2 w2 
V2(t )  N - 

2 4 ~  M * t K  

with Q: defined by 

Q* - L'(L)'[ -60480+P4-+O 2569 -. - 343P2 2880 8448 (:)I 
The constants M and M* are given by 

LlCI = P-2+&, QM* = &. 2 

The expressions (5.5) and (5.7) are similar qualitatively (and quantitatively 
for large CT and P ) .  For large values of P, both &T and &Z are positive and both 
become negative for P less than a critical Pkclet number (which is approximately 
the same for both cases if CT is large). If the O(a-l) terms in (5.6) are neglected, 
&T changes sign at the critical PQclet number 

P, z 21.12, (5.10) 

and in the experiments of Reejhsinghani et ul. (1966), this PQclet number corres- 
ponds to an approximate mean flow speed of cm/s in a tube of 1-5 mm 
internal diameter. 

Clearly, the expression (5.7) is inaccurate for low values of the PQclet number 
since the O(t-l) terms become infinite as P + 0. The omission of the term 2 ~ t  
in (5.7) is not important since, as Erdogan & Chatwin (1967) remarked, it can be 
obtained easily by including axial molecular diffusion in a steady asymptotic 
theory. The expression (5.5) for v2(t)  as predicted by part 2 is consistent at all 
Pkclet numbers, including those near zero. 

It is now possible to make some comments on the physical assumptions 
underlying Erdogan & Chatwin's (1967) model (see 92 of part 1). The time- 
dependent theory presented in part 2 demonstrates that Erdogan & Chatwin's 
arguments are sound provided that the PBclet and Schmidt numbers of the flow 
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- c* 

FIGURE 1. A schematic representation of the asymptotic form of u&). Curve (1) is 
v2(t)  - t ( a 2 W a / 2 4 ~ + 2 ~ ) + C 1 - y l / t  and is the asymptote of vA(t) for Pl < P,. Line ( 2 )  is 
v2(t) - t ( a 2 W 2 / 2 4 ~  + Z K )  - C,  + yz/t and is the asymptote of vz(t)  for Pz > Po. The asymptotio 
theory is useful only for large t ,  e.g. t > to (see text). 

are both large. Their theory should be remarkably accurate for many solutes 
dispersing in liquids, although perhaps not for the dispersion of a buoyant con- 
taminant in a laminar flow of gas. In  brief, Erdogan & Chatwin selected for their 
model exactly those terms which are most important in describing the dispersion 
of buoyant solutes in solvents. 

It seems worthwhile to describe the behaviour of vz(t)  at large times by sketch- 
ing it at two representative values of the PBclet number P .  First consider dis- 
persion when the PQclet number Pl is small, with 0 < Pl < P,. For small P ,  both 
Reejhsinghani et al. (1966) and Erdogan & Chatwin (1967) argue that mean 
axial spreading due to density currents is of more significance to the dispersion 
process than increased cross-sectional mixing (which reduces the dispersion). 
If this is true even for transient times, the constant 2(Pa)2P(3,0)/P(130) in (5.5) 
should have a positive value, say, cl, when Pl < P,. Also the O(t-l) term is negative 
for 0 < Pl < P, and equal to - yJt, say. In  the second instance, consider a flow 
with a PBclet number P2 greater than P,. Then the arguments of the last-cited 
authors suggest that 2(Pa)2P(3,0)//3@90) is negative and equal to -cz, say, whilst 
the O(t-l) term in (5.5) is positive and equal to y&. A schematic representation 
of v2(t)  for these two situations is given in figure i .  

It is difficult to estimate the range of times for which the present theory is 
applicable. Chatwin (1970), in his study of dispersing passive solutes in Poiseuille 
flow, suggested that an expansion of the form (5.5) represented v2(t) to greater 
than 95% accuracy when t > to, where the non-dimensional time ~ t , / a ~  is 0.25 
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approximately. Presumably a similar range of validity holds for the case of 
buoyant solutes. 

In  conclusion, one further comparison may be made between parts 1 and 2. 
The coefficient functions C(j) given in table 2 show that buoyancy effects first 
modify the profile for C(r,O,X) in the O(TL4) terms, and the profile for C ( X )  
in the term !P5$$)(X). This term satisfies an equation which is very similar to 
the equation (3.10) in part 1 for h(X) .  Thus the theories predict a similar density 
modification to the profile 6. 

The author acknowledges with gratitude that the research for this paper was 
carried out mainly during the tenure of a C.S.I.R.O. Postdoctoral Studentship 
at the University of Cambridge. Also, he is grateful to Dr P. C. Chatwin and Prof. 
J. S. Turner for their constructive comments on a preliminary draft. 

Appendix 
Al. The coeficients dn) and v"), n 2 3 

A stream-function approach is inappropriate for terms O(T-") for n 3 3, and 
the first instance of this failure may be seen by considering (2.25) with n = 3. 
[In this case, the term wg is known from (3.15) to be non-zero, and so (2.25) 
cannot be satisfied using a function with properties analogous-to (3.3).] To 
avoid this problem, one of the velocity components u(*) and v(*) may be eliminated 
from (2.21), (2.22) and (2.25) in favour of the other to  obtain a single equation 
with known inhomogeneous terms. For example, if dn)is eliminated, the equation 
for u(n) takes the form 

and 

This equation may be solved for dn) and the continuity equation (2.25) then 
gives dn). 
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A2. The important functions in table 1 
Some of the functions mentioned in table 1 axe listed below. The remaining 
functions are unimportant since they lead to zero cross-sectional means in the 
equa.tiot1 for @) (see SA4). 

aR 1 
k,(r) = -7 f % ~ ~ ( r ~ - B r ~ + g r ~ - 4 ) ,  

1 
192P2 

f 5 [ - rS + 6r4- 9r2 + 41 + - f g X  [5r4 - lor2 + 51 

+ 276i800 f yx [ (9 +:)lo- (75 + F) rS + (250 + F) r6 

- (450 + :) r4+ (405 -?) r2- (139- $)I), 
3 

aR 2 1 1  1 7 2 5 6 5  
kS(r) = (--) f(l)f(l) xx (-T 737280P ( - - ~ l l + - r ~ - - r 7 + - r s - ~ o r s + - r  3 2 2 3 

r17 - 40r15 + 33Orl3 -- 4396r11+ 3983r9- 6930r7 
3 

30907r) + ( 11 -1 1541 

1 

23 170 
576 3840P2+ (576)2403200u 

+-r5 - 5320r3+- 
3 18 

ll(r) = -fY- (7r6-30r4+27r2-4), 
aR 1 
c 2304 

99+- "') rlo+ ( 675+- 'z5) r8- (l750+- 
+ 2 7 6 : 8 0 O f Y x [ - (  fl 

[ - 4r1° + 35@ - 1001.6 + 130r4- 80ra+ 191 
1 

= - (aRf%)2 2 1 474 56Op2 

[35r16 - 64W4 + 4620r12 - 17 584rlo + 39 83W - 55 440fl 

1 p{  

' ~ ( 5 7 6 ) ~  358400 

11 1541 + 46 340r4 - 21 280r2 + 41191 + 
n@)(X) satisfies 

dn@) 11 
dX 576 x 
-- 
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A3. The functions g(r,s)(r, 8, X), r 2 4, s 2 2 

The functions g(4~1) and g(492) are defined by (3.25) and (3.26). The functions 
g(6s1), g(5,2) and g(5~3)referred to in (3.27) are defined by the problems 

In these equations, the g(*P1) have the same form as the corresponding functions 
found by Chatwin (1970) for a passive marker, and only g(4,2) and g(6*4) affect the 
equation for @$I (see SA4). These functions have the form 
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and 
1 

g@*4)(r, 8, X )  = (aBf$)2 [ 2( 576)2P2 { r12 (A A) - ‘lo (g + &) 
+ r8 (z 93 +=) 45 - r6 (S 55 + &) 13 + r4 (9 + ga) - r2 (6 + &) 

139 2969 (-+(- 1 1 
f (112 -+- 11.2001~)]+32(576)2 

+r16 (A +- 7 +-) 1 -r14 (- 
+ 569 ) +r12 (E 1920 +- 9 6 0 0 ~ + 1 4 4 0 0 a ~  ‘57 )-.lo(- +- 

1129 2033 99 -+- 251 4901 +”-) 

4320+-+ 1 0 3 6 8 0 0 ~ ~  

73 29 +- 
2560 1 2 8 0 0 ~  4 4 8 0 ~ ~  2240 56001~’ 1 5 6 8 0 ~ ~  

553 37 
1600 4 0 0 ~  1 6 0 0 0 ~ ~  

263 

360 1 4 4 0 0 ~  2 8 8 0 ~ ~  

60 75~7 4 0 3 2 0 0 ~ ~  
( 9 1  287 + 22399 ) ( 17 16 

15343 + 506917 

+r4 -+- -r2 -+-+ 

+ (- 302 400 12 096 OOOU + 508 032 OOOcr2 

+ func. ( r )  cos 8 + func. ( r )  cos 28. 

160 800a 2016001~~ 
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Here, many terms can be seen to vanish since they are the zero cross-sectional 
means of terms of the form func. ( r )  COB no. A simple argument based on the 
definition of the stream function qV2)(v,0,X) r(3.3) and (3.4)] shows that the 
terms included in the curly brackets give no contribution. 
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